USN

Third Semester B.E. Degree Examination, June/July 2014 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Find Fourier series of $f(x) = 2\pi x - x^2$ in $[0, 2\pi]$. Hence deduce $\sum_{i=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$. Sketch the graph of f(x).

b. Find Fourier cosine series of $f(x) = \sin\left(\frac{m\pi}{\ell}\right)x$, where m is positive integer. (06 Marks)

c. Following table gives current (A) over period (T):

A (amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98
t (sec)	0	T/6	T/3	T/2	2T/3	5T/6	T

Find amplitude of first harmonic.

(07 Marks)

- 2 a. Find Fourier transformation of $e^{-a^2x^2}$ ($-\infty < x < \infty$) hence show that $e^{-x^2/2}$ is self reciprocal.
 - b. Find Fourier cosine and sine transformation of

$$f(x) = \begin{cases} x & 0 < x < a \\ 0 & x \ge a \end{cases}$$
 (06 Marks)

- c. Solve integral equation $\int_{0}^{\infty} f(x) \cos sx dx = \begin{cases} 1-s & 0 < s < 1 \\ 0 & s \ge 1 \end{cases}$. Hence deduce $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} dx = \frac{\pi}{2}$.
- 3 a. Find various possible solution of one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by separable variable method. (07 Marks)
 - b. Obtain solution of heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial t^2}$ subject to condition u(0, t) = 0, $u(\ell, t) = 0$, u(x, 0) = f(x).
 - c. Solve Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to condition $u(0, y) = u(\ell, y) = u(x, 0) = 0$; $u(x, a) = \sin\left(\frac{\pi x}{\ell}\right)$. (07 Marks)
- 4 a. The revolution (r) and time (t) are related by quadratic polynomial $r = at^2 + bt + c$. Estimate number revolution for time 3.5 units, given

(07 Marks)

b. Solve by graphical method, Minimize $Z = 20x_1 + 10x_2$ under the constraints $2x_1 + x_2 \ge 0$; $x_1 + 2x_2 \le 40$; $3x_1 + x_2 \ge 0$; $4x_1 + 3x_2 \ge 60$; $x_1, x_2 \ge 0$. (06 Marks) c. A company produces 3 items A, B, C. Each unit of A requires 8 minutes, 4 minutes and 2 minutes of producing time on machine M₁, M₂ and M₃ respectively. Similarly B requires 2, 3, 0 and C requires 3, 0, 1 minutes of machine M₁, M₂ and M₃. Profit per unit of A, B and C are Rs.20, Rs.6 and Rs.8 respectively. For maximum profit, how many number of products A, B and C are to be produced? Find maximum profit. Given machine M₁, M₂, M₃ are available for 250, 100 and 60 minutes per day.

- $\frac{PART B}{PART B}$ By relaxation method, solve -x + 6y + 27z = 85, 54x + y + z = 110, 2x + 15y + 6z = 72.
 - b. Using Newton Raphson method derive the iteration formula to find the value of reciprocal of positive number. Hence use to find $\frac{1}{2}$ upto 4 decimals. (06 Marks)
 - Using power rayley method find numerical largest eigen value and corresponding eigen vector for $\begin{bmatrix} 10 & 2 & 1 \\ 2 & 10 & 1 \end{bmatrix}$ using $(1, 1, 0)^T$ as initial vector. Carry out 10 iterations.
- Fit interpolating polynomial for f(x) using divided difference formula and hence evaluate 6 f(z), given f(0) = -5, f(1) = -14, f(4) = -125, f(8) = -21, f(10) = 355.
 - Estimate t when f(t) = 85, using inverse interpolation formula given:

t	2	5	8	14
f(t)	94.8	87.9	81.3	68.7

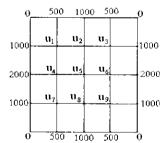
A solid of revolution is formed by rotating about x-axis, the area between x-axis, lines x = 0, x = 1 and curve through the points with the following co-ordinates.

х	0	1/6	2/6	3/6	4/6	5/6	1
у	0.1	0.8982	0.9018	0.9589	0.9432	0.9001	0.8415

by Simpson's $3/8^{th}$ rule, find volume of solid formed.

(06 Marks)

- Using the Schmidt two-level point formula solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ under the conditions u(0, t) = u(1, t) = 0; $t \ge 0$; $u(1, 0) = \sin \pi x$ 0 < x < 1, take $h = \frac{1}{4} \alpha = \frac{1}{6}$. Carry out 3 steps in time level.
 - b. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to $u(0, t) = u(4, t) = u_1(x, 0) = 0$, u(x, 0) = x(4-x)take h = 1 k = 0.5
 - c. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the square mesh. Carry out 2 iterations. (07 Marks)



- a. State and prove recurrence relation of f-transformation hence find $Z_T(n)$, $Z_T(n^2)$. (07 Marks)
 - b. Find $Z_T[e^{n\theta} \cosh n\theta \sin(nA + \theta) + n]$.

(06 Marks)

c. Solve difference equation $u_{n+2} + 6u_{n+1} + 9u_n = n2^n$ given $u_0 = u_1 = 0$. (07 Marks)